Tree-on-DAG for Data Aggregation in Sensor Networks

نویسنده

  • M Patnaik
چکیده

Computing and maintaining network structures for efficient data aggregation incurs high overhead for dynamic events where the set of nodes sensing an event changes with time. Moreover, structured approaches are sensitive to the waiting time that is used by nodes to wait for packets from their children before forwarding the packet to the sink. An optimal routing and data aggregation scheme for wireless sensor networks is proposed in this paper. We propose Tree on DAG (ToD), a semistructured approach that uses Dynamic Forwarding on an implicitly constructed structure composed of multiple shortest path trees to support network scalability. The key principle behind ToD is that adjacent nodes in a graph will have low stretch in one of these trees in ToD, thus resulting in early aggregation of packets. Based on simulations on a 2,000-node Mica2based network, we conclude that efficient aggregation in large-scale networks can be achieved by our semistructured approach. Keywords—Aggregation, Packet Merging, Query Processing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

درخت تجمیع داده براساس الگوریتم پویای شکل گیری رودخانه درشبکه حسگر بی سیم

One of the main challenges in Wireless Sensor Networks is the limited energy of nodes which can cause to reduce the lifetime of nodes and whole network respectively. Transmissions between the nodes consumes most of the nodes' energy so minimization of unnecessary transmissions can led to reduction of energy consumption. Therefor routing protocols designed based on optimal energy consumption are...

متن کامل

EIDA: An Energy-Intrusion aware Data Aggregation Technique for Wireless Sensor Networks

Energy consumption is considered as a critical issue in wireless sensor networks (WSNs). Batteries of sensor nodes have limited power supply which in turn limits services and applications that can be supported by them. An efcient solution to improve energy consumption and even trafc in WSNs is Data Aggregation (DA) that can reduce the number of transmissions. Two main challenges for DA are: (i)...

متن کامل

STCS-GAF: Spatio-Temporal Compressive Sensing in Wireless Sensor Networks- A GAF-Based Approach

Routing and data aggregation are two important techniques for reducing communication cost of wireless sensor networks (WSNs). To minimize communication cost, routing methods can be merged with data aggregation techniques. Compressive sensing (CS) is one of the effective techniques for aggregating network data, which can reduce the cost of communication by reducing the amount of routed data to t...

متن کامل

Quasi Random Deployment Strategy for Reliable Communication Backbones in Wireless Sensor Networks

Topology construction and topology maintenance are significant sub-problems of topology control. Spanning tree based algorithms for topology control are basically transmission range based type construction algorithms. The construction of an effective backbone, however, is indirectly related to the placement of nodes. Also, the dependence of network reliability on the communication path undertak...

متن کامل

AEESPAN: Automata Based Energy Efficient Spanning Tree for Data Aggregation in Wireless Sensor Networks

In Wireless Sensor Networks (WSNs), sensor nodes are developed densely. They have limit processing capability and low power resources. Thus, energy is one of most important constraints in these networks. In some applications of sensor networks, sensor nodes sense data from the environment periodically and transmit these data to sink node. In order to decrease energy consumption and so, increase...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009